Tree-based Methods
Complete Paper List in Reverse Chronological Order
Selected Recent Papers on Tree-based Methods
- Y. S. Tan, O. Ronen, T. Saarinen, B. Yu (2024). The Computational Curse of Big Data for Bayesian Additive Regression Trees: a Hitting Time Analysis.
- Y. S. Tan, C. Singh, K. Nasseri, A. Agarwal, J. Duncan, O. Ronen, M. Epland, A. Kornblith, B. Yu (2022). Fast interpretable greedy-tree sums (FIGS). (imodels 🔎: a python package for fitting interpretable models contains code for FIGS).
- M. Behr, Y. Wang, X. Li, B. Yu (2022). Provable Boolean Interaction Recovery from Tree Ensemble obtained via Random Forests. PNAS, (theory for a tractable version of iRF, PCS-related)
- A. Agarwal, Y. S. Tan, O. Ronen, C. Singh, B. Yu (2022). Hierarchical shrinkage: improving accuracy and interpretability of tree-based methods. Proc. ICML (imodels 🔎: a python package for fitting interpretable models contains code for hierarchical shrinkage (HS))
- Y. Tan, A. Agarwal, and B. Yu (2021). A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds. Proc. AISTATS.
- M. Behr, K. Kumbier, A. Cordova-Palomera, M. Aguirre, E. Ashley, A. Butte, R. Arnaout, J. B. Brown, J. Preist, B. Yu (2020). Learning epistatic polygenic phenotypes with Boolean interactions. (code) (PCS inference case study)
- K. Kumbier, S. Sumanta, J. B. Brown, S. Celniker, and B. Yu* (2018) Refining interaction search through signed iterative Random Forests. (an enhanced version of iRF, PCS related)
- S. Basu, K. Kumbier, J. B. Brown, and B. Yu (2018) iterative Random Forests to discover predictive and stable high-order interactions PNAS, 115 (8), 1943-1948. (code) (PCS related)